
git and Github

git
git is a version control system

Commonly used by large code development projects to track and commit
changes/additions to the codebase.

Written by Linus Torvalds to manage the Linux kernel project

Other version control systems

cvs -- Concurrent Versioning System

svn -- Subversion

hg -- Mercurial

Creating a repository
In the directory that contains the �les you want to track, type:

That’s it!

> git init

Adding �les to the repository
git doesn’t assume that all �les in the directory should be committed to the repository, you must
add them. To get a listing of both tracked and untracked �les.

To add a �le, (e.g. file.txt) to the repository index

To add all �les in a directory.

> git status

> git add file.txt

> git add .

Committing
Once you have added �les to the index and your ready to save a “snapshot” of your repository,
perform a commit

Leave o� the -m and your $EDITOR will open for you to include a longer commit message. To
commit all modi�ed �les already tracked in the repository without explicitly using git add use
the -a option

> git commit -m 'a commit message'

> git commit -a -m 'a commit message'

Good commit messages

Long(er) commit message example
Short (50 chars or less) summary of changes.

More detailed explanatory text, if necessary. Wrap it at 72 characters.
The first line is treated as the subject of an email and the rest of the
text as the body. The blank line separating the summary from the body
is critical.

Write your commit message in the present tense: "Fix bug" and not
"Fixed bug."

Further paragraphs come after blank lines.

* Bullet points are okay, too
* Typically a hyphen or asterisk is used for the bullet, preceded by a
single space, with blank lines in between

Excluding �les
Put �les you don’t want to appear in the status listing in a �le named .gitignore

Example .gitignore �le
Ignore emacs backup files:
*~

Ignore everything in the docs directory:
docs

Removing �les from git
To remove a �le (e.g., file.txt) from your repository use

This removes file.txt completely from your disk, same as regular UNIX rm

If you only want to remove a �le from the git repository, but leave it in your working directory
use:

> git rm file.txt

> git rm --cached file.txt

Going back in time (reverting)
To go back to the previous commit

To go back three commits

To go back to a speci�c commit

The daa8d81f is a hash string that identi�es the commit, it can be seen with git log

> git revert HEAD

> git revert HEAD~3

> git revert daa8d81f

Going back while trashing changes
To permanently trash your changes and get back the most recent commit

To get back a previous commit and trash all commits that happened after

If you only want to reset one �le (e.g., file.txt)

> git reset --hard HEAD

> git reset --hard daa8d81f

> git checkout file.txt

Cloning remote repositories
To clone remote (not local to your machine) repositories and create a local working copy for
your own modi�cation use git clone, e.g.,

Will clone my dotvim repository to a folder in ~ named .vim This repository becomes local, i.e.
you can make changes and local commits.

To stay "in sync"

origin is the default remote repo name and master is the default branch name.

> git clone git://github.com/johntfoster/dotvim.git ~/.vim

> git pull origin master

Pushing to remote repositories
To push changes to a remote repository, any local changes must be �rst commited locally as
usual:

The push to the remote repository with

git commit -am "A commit message."

git push origin master

Advanced features
Branching
Merging

Github

Cloud based remote repository server

Unlimited public repositories
Private repositories available (educational plans for free)
Teams/Organizations
Integrated "Pull request" and code review system

Similar services

https://github.com

https://bitbucket.org
https://gitlab.com

https://github.com/
https://bitbucket.org/
https://gitlab.com/

