Constitutive modeling

Kinematics of strain

${}$

"2D geometric strain" by Sanpaz. Licensed under Public Domain via Wikimedia Commons.

Strain tensor

${}$

$$ \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} $$
$$\varepsilon_{ij} = \frac{1}{2}\left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) \quad \mbox{for} \quad i=1,2,3 \quad j=1,2,3$$

Volumetric strain

$$ \varepsilon_{vol} = \mbox{tr}(\boldsymbol{\varepsilon}) = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} $$

Material constants for isotropic materials

Young's modulus

$$E = \frac{S_{11}}{\varepsilon_{11}}$$

Bulk modulus

$$K = \frac{S_{11}+S_{22}+S_{33}}{3\varepsilon_{vol}}$$

Shear Modulus

$$G = \frac{1}{2} \frac{S_{13}}{\varepsilon_{13}}$$

Poisson's ratio

$$\nu = \frac{\varepsilon_{33}}{\varepsilon_{11}}$$

Typical Young's modulus values

${}$

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Typical Poissons' modulus values

${}$

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Generalized Hooke's law

${}$

$$\vec{\sigma} = \boldsymbol{C} \, \vec{\varepsilon}$$

For isotropic materials

\begin{equation} \small \left\lbrace\begin{matrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{matrix}\right\rbrace = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 - \nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1 - \nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1 - \nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1 - 2 \nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1 - 2 \nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1 - 2 \nu) \end{bmatrix} \left\lbrace\begin{matrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \\ 2\varepsilon_{13} \\ 2\varepsilon_{23} \end{matrix}\right\rbrace \end{equation}
$$\mathbf{S} = K \varepsilon_{vol} \mathbf{I} + 2 G \left(\boldsymbol{\varepsilon} - \frac{1}{3} \varepsilon_{vol}\mathbf{I}\right)$$$$G = \frac{E}{2(1+\nu)} \Rightarrow \mbox{shear modulus}$$

$$\mathbf{S} = \lambda \varepsilon_{vol} \mathbf{I} + 2 G \boldsymbol{\varepsilon} $$$$\lambda = K - \frac{2}{3} G \Rightarrow \text{Lamé's constant}$$

Relationships between constants

$K=\,$ $E=\,$ $\lambda=\,$ $G=\,$ $\nu=\,$ $M=\,$
$(K,\,E)$ $K$ $E$ $\tfrac{3K(3K-E)}{9K-E}$ $\tfrac{3KE}{9K-E}$ $\tfrac{3K-E}{6K}$ $\tfrac{3K(3K+E)}{9K-E}$
$(K,\,\lambda)$ $K$ $\tfrac{9K(K-\lambda)}{3K-\lambda}$ $\lambda$ $\tfrac{3(K-\lambda)}{2}$ $\tfrac{\lambda}{3K-\lambda}$ $3K-2\lambda\,$
$(K,\,G)$ $K$ $\tfrac{9KG}{3K+G}$ $K-\tfrac{2G}{3}$ $G$ $\tfrac{3K-2G}{2(3K+G)}$ $K+\tfrac{4G}{3}$
$(K,\,\nu)$ $K$ $3K(1-2\nu)\,$ $\tfrac{3K\nu}{1+\nu}$ $\tfrac{3K(1-2\nu)}{2(1+\nu)}$ $\nu$ $\tfrac{3K(1-\nu)}{1+\nu}$
$(K,\,M)$ $K$ $\tfrac{9K(M-K)}{3K+M}$ $\tfrac{3K-M}{2}$ $\tfrac{3(M-K)}{4}$ $\tfrac{3K-M}{3K+M}$ $M$
$(E,\,\lambda)$ $\tfrac{E + 3\lambda + R}{6}$ $E$ $\lambda$ $\tfrac{E-3\lambda+R}{4}$ $\tfrac{2\lambda}{E+\lambda+R}$ $\tfrac{E-\lambda+R}{2}$
$(E,\,G)$ $\tfrac{EG}{3(3G-E)}$ $E$ $\tfrac{G(E-2G)}{3G-E}$ $G$ $\tfrac{E}{2G}-1$ $\tfrac{G(4G-E)}{3G-E}$
$(E,\,\nu)$ $\tfrac{E}{3(1-2\nu)}$ $E$ $\tfrac{E\nu}{(1+\nu)(1-2\nu)}$ $\tfrac{E}{2(1+\nu)}$ $\nu$ $\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}$
$(E,\,M)$ $\tfrac{3M-E+S}{6}$ $E$ $\tfrac{M-E+S}{4}$ $\tfrac{3M+E-S}{8}$ $\tfrac{E-M+S}{4M}$ $M$
$(\lambda,\,G)$ $\lambda+ \tfrac{2G}{3}$ $\tfrac{G(3\lambda + 2G)}{\lambda + G}$ $\lambda$ $G$ $\tfrac{\lambda}{2(\lambda + G)}$ $\lambda+2G\,$
$(\lambda,\,\nu)$ $\tfrac{\lambda(1+\nu)}{3\nu}$ $\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}$ $\lambda$ $\tfrac{\lambda(1-2\nu)}{2\nu}$ $\nu$ $\tfrac{\lambda(1-\nu)}{\nu}$
$(\lambda,\,M)$ $\tfrac{M + 2\lambda}{3}$ $\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}$ $\lambda$ $\tfrac{M-\lambda}{2}$ $\tfrac{\lambda}{M+\lambda}$ $M$
$(G,\,\nu)$ $\tfrac{2G(1+\nu)}{3(1-2\nu)}$ $2G(1+\nu)\,$ $\tfrac{2 G \nu}{1-2\nu}$ $G$ $\nu$ $\tfrac{2G(1-\nu)}{1-2\nu}$
$(G,\,M)$ $M - \tfrac{4G}{3}$ $\tfrac{G(3M-4G)}{M-G}$ $M - 2G\,$ $G$ $\tfrac{M - 2G}{2M - 2G}$ $M$
$(\nu,\,M)$ $\tfrac{M(1+\nu)}{3(1-\nu)}$ $\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}$ $\tfrac{M \nu}{1-\nu}$ $\tfrac{M(1-2\nu)}{2(1-\nu)}$ $\nu$ $M$

Siesmic wave velocity

$$V_p = \sqrt{\frac{M}{\rho}}, \quad \quad V_s = \sqrt{\frac{G}{\rho}}$$