© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.1, pp. 86)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.1, pp. 86)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.1, pp. 86)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.1, pp. 86)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.1, pp. 86)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.2b, pp. 88)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.2a,c pp. 88)
${}$
$$ \tau = S_0 + \sigma_n \mu_i $$$\mu_i = \dfrac{n-1}{2\sqrt{n}}$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.3a pp. 90)
${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.3a, pp. 88)
${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.4, pp. 91)
${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.5, pp. 92)
Mohr Coulomb Yield Surface 3Da. Licensed under CC BY-SA 3.0 via Wikipedia
Mohr Coulomb Yield Surface 3Db. Licensed under CC BY-SA 3.0 via Wikipedia
© Blackwell Publishing Jaeger, et al., Fundamentals of Rock Mechanics (Fig. 4.5, pp. 86)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.6, pp. 94)
${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.3a, pp. 88)
${}$
$$ \sigma_1 = \sigma_3 + C_0 \sqrt{m \dfrac{\sigma_3}{C_0} + s} $$$m$ and $s$ are fitting parameters that depend on rock properties and the degress of fracturing. Typical values
Typical Range of $ m $ | Types of rocks |
---|---|
$5 < m < 8$ | carbonate rocks (dolomite, limestone, marble) |
$4 < m < 10$ | lithified argillaceous rocks (sandstones, quartizite) |
$15 < m < 24$ | arenaceous rocks (andesite, dolerite, diabase, rhyolite) |
$22 < m < 33$ | course-grained polyminerallic gineous and metamorphic (amphibolite, gabbro, gneiss, norite, quartz-diorite) |
Intact Rocks -- $s \to 1$
Completely Granualated -- $s \to 0$
${}$
$$ \left( \frac{I_1^3}{I_3} - 27 \right) \left( \frac{I_1}{p_a} \right)^{m'} = \eta_1 $$with
$I_1 = S_{ii} = S_1 + S_2 + S_3$ (first invariant of $\mathbf{S}$)
$I_3 = \det(\mathbf{S}) = S_1 S_2 S_3$ (third invariant of $\mathbf{S}$)
$p_a$ is atmospheric pressure, $m'$ and $n_1$ are material constants
${}$
$$ \left( \frac{(I_1')^3}{I_3'} \right) = 27 + \eta $$with
$I_1' = (\sigma_1 + S) + (\sigma_2 + S) + (\sigma_3 + S)$
$I_3' = (\sigma_1 + S) (\sigma_2 + S) (\sigma_3 + S)$
$S = \dfrac{S_0}{\tan\phi}$
$\eta = \dfrac{4 (\tan\phi)^2 (9- 7 \sin\phi)}{1 - \sin \phi)}$
$\tan\phi = \mu_i$ and $S_0$ from Mohr-Coulomb criterion
Mohr-Coulomb | modified Lade |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.8b and 4.9b, pp. 96-97)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.12, pp. 106)
Mohr Coulomb Yield Surface 3Da. Licensed under CC BY-SA 3.0 via Wikipedia
Porosity loss in sandstone |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.20, pp. 120)
${}$
$$ M^2 p^2 - M^2 p_0 p + q^2 = 0 $$with
$$ p = \dfrac{1}{3}\left(\sigma_1 + \sigma_2 + \sigma_3\right) $$$$ q^2 = \dfrac{1}{2} \left((S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_1 - S_3)^2 \right) $$$$ M = \dfrac{q}{p} $$${}$
${}$
R.M. Brannon, A.F. Fossum, and O.E. Strack: Kayenta: Theory and User’s Guide. Tech. rep. Sandia National Laboratories, 2009.