Rock failure

Types of tests on rocks

Hydrostatic compression

$$S_0 = S_1 = S_2 = S_3$$

Uniaxial compression

$$S_0 \neq 0 \quad S_2 = S_3 = 0$$

Triaxial compression

 $S_1 > S_2 = S_3$

Triaxial extension

 $S_1 = S_2 > S_3$

True triaxial

 $S_1 \neq S_2 \neq S_3$

Mohr's circles

$$\tau_f = \frac{1}{2}(\sigma_1 - \sigma_3)\sin(2\beta)$$
$$\sigma_n = \frac{1}{2}(\sigma + \sigma_3) + \frac{1}{2}(\sigma_1 - \sigma_3)\cos(2\beta)$$

Mohr Envelope

Linearized Mohr Envelope

Mohr-Coulomb failure

 $\tau = S_0 + \sigma_n \mu_i$

$$C_0 = 2S_0 \left(\sqrt{\mu_i^2 + 1} + \mu_i\right)$$

Triaxial tests on sandstone

Mohr Envelope for Sandstone

Cohesion and internal friction data

Cohesion and internal friction data

TEXAS © Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.5, pp. 92)

Yield surface

Mohr Coulomb Yield Surface 3Da. Licensed under CC BY-SA 3.0 via Wikipedia

π-plane

Mohr Coulomb Yield Surface 3Db. Licensed under CC BY-SA 3.0 via Wikipedia

Pressure dependence

© Blackwell Publishing Jaeger, et al., Fundamentals of Rock Mechanics (Fig. 4.5, pp. 86)

Other failure criteria

Recall: Mohr Envelope for Sandstone

Hoek-Brown criterion (parabolic fitting)

$$\sigma_1 = \sigma_3 + C_0 \sqrt{m \frac{\sigma_3}{C_0} + s}$$

m and *s* are fitting parameters that depend on rock properties and the degress of fracturing. Typical values

Typical Range of m	Types of rocks
5 < m < 8	carbonate rocks (dolomite, limestone, marble)
4 < m < 10	lithified argillaceous rocks (sandstones, quartizite)
15 < m < 24	arenaceous rocks (andesite, dolerite, diabase, rhyolite)
22 < <i>m</i> < 33	course-grained polyminerallic gineous and metamorphic (amphibolite, gabbro, gneiss, norite, quartz-diorite)

Intact Rocks -- $s \rightarrow 1$

TEXAS The University of Texas at Austin

Completely Granualated -- $s \rightarrow 0$

Lade Criterion

$$\left(\frac{I_1^3}{I_3} - 27\right) \left(\frac{I_1}{p_a}\right)^{m'} = \eta_1$$

with

 $I_1 = S_{ii} = S_1 + S_2 + S_3$ (first invariant of **S**)

 $I_3 = \det(\mathbf{S}) = S_1 S_2 S_3$ (third invariant of \mathbf{S})

 p_a is atmospheric pressure, m' and n_1 are material constants

Modified Lade Criterion (dependece on σ_2)

$$\left(\frac{(I_1')^3}{I_3'}\right) = 27 + \eta$$

with

$$I'_{1} = (\sigma_{1} + S) + (\sigma_{2} + S) + (\sigma_{3} + S)$$
$$I'_{3} = (\sigma_{1} + S)(\sigma_{2} + S)(\sigma_{3} + S)$$
$$S = \frac{S_{0}}{\tan \phi}$$
$$\eta = \frac{4(\tan \phi)^{2}(9 - 7\sin \phi)}{1 - \sin \phi}$$

 $\tan \phi = \mu_i$ and S_0 from Mohr-Coulomb criterion

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.8b and 4.9b, pp. 96-97)

Others

- modified Wiebols-Cook
- Druker-Prager
- many more!

Strength anisotropy

 $\sigma_1 = \sigma_3 \frac{2(S_w + \mu_w \sigma_3)}{(1 - \mu_w \cot \beta_w) \sin 2\beta}$

Recall: Yield surface

Mohr Coulomb Yield Surface 3Da. Licensed under CC BY-SA 3.0 via Wikipedia

Shear enhanced compaction

Porosity loss in sandstone

Cam-Clay model

$$M^2 p^2 - M^2 p_0 p + q^2 = 0$$

with

$$p = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)$$
$$q^2 = \frac{1}{2} \left((S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_1 - S_3)^2 \right)$$
$$M = \frac{q}{p}$$

Cam-Clay model

Sandia geomodel (Kayenta)

R.M. Brannon, A.F. Fossum, and O.E. Strack: Kayenta: Theory and User's Guide. Tech. rep. Sandia National Laboratories, 2009.

