Reasons:
Tensile strength is low compared to compressive strength.
When a large enough volume of rock is considered, flaws are bound to exist making the tensile strength near zero.
In situ stress at depth is never tensile.
${}$
$$ K_{Ic} \ge K_I = (P_f - S_3) \pi \sqrt{L} $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.21, pp. 122)
${}$
$$ \dfrac{\tau}{\sigma_n} = \mu $$Coulomb failure function
$$ f = \tau - \mu \sigma_n \le 0 $$${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.25, pp. 129)
${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.26, pp. 129)
Optimal angle for frictional sliding:
$$ \beta = \frac{\pi}{4} + \frac{1}{2} \tan^{-1}\mu $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.27b,c, pp. 131)
${}$
$$ \frac{\sigma_1}{\sigma_3} = \frac{S_1 - P_p}{S_3 - P_p} = \left(\sqrt{\mu^2 + 1}+\mu^2\right)^2 $$Asuming $\mu = 0.6$
$$ \frac{\sigma_1}{\sigma_3} = 3.1 $$$\dfrac{S_v - P_p}{S_{hmin} - P_p} \le \left(\sqrt{\mu^2 + 1}+\mu^2\right)$ | $\dfrac{S_{Hmax} - P_p}{S_{hmin} - P_p} \le \left(\sqrt{\mu^2 + 1}+\mu^2\right)$ | $\dfrac{S_{Hmax} - P_p}{S_v - P_p} \le \left(\sqrt{\mu^2 + 1}+\mu^2\right)$ |
${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.30, pp. 136)