${}$
\begin{equation} \left\{\begin{matrix} c_1 \\ c_2 \\ c_3 \end{matrix}\right\} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \left\{\begin{matrix} b_1 \\ b_2 \\ b_3 \end{matrix}\right\} \end{equation}In words: $c_i$ is the dot product of the $i^{\mbox{th}}$ row of $\mathbf{a}$ with $\vec{b}$...
${}$
\begin{equation} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \end{equation}In words: $c_{ij}$ is the dot product of the $i^{\mbox{th}}$ row of $\mathbf{a}$ with the $j^{\mbox{th}}$ column of $\mathbf{b}$
${}$
$$ \mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$${}$
$$ \mathbf{A} = \begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i \end{bmatrix} $$Used in solving matrix equations, i.e.
\begin{equation} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \left\{ \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \right\} = \left\{\begin{matrix} b_1 \\ b_2 \\ b_3 \end{matrix} \right\} \end{equation}Solve for $\vec{x}$
\begin{equation} \begin{bmatrix} 2 & 3 & -2 \\ 0 & 0 & 3 \\ 1 & 0 & 2 \\ \end{bmatrix} \left\{ \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix}\right\} = \left\{ \begin{matrix} 6 \\ -6 \\ 3 \end{matrix}\right\} \end{equation}${}$
$$ \mathbf{A} \vec{v} = \lambda \vec{v} $$A non-trivial solution for $\vec{v}$ exists, if and only if
$$ \det(\mathbf{A} - \lambda \mathbf{I}) = 0 $$The $\lambda$'s are called the eigenvalues. Examples to follow in the context of stress.
${}$
$$ \vec{v}' = \mathbf{Q} \vec{v} $$${}$
$$ \mathbf{S}' = \mathbf{Q}^{-1} \mathbf{S} \mathbf{Q} $$If $\mathbf{Q}$ is chosen such that its columns are eigenvectors of $\mathbf{S}$, then $\mathbf{S}'$ will be diagonal with its entries cooresponding to the eigenvalues $\mathbf{S}$ (and $\mathbf{S}'$).