$$\dot{\sigma} = f(\dot{\epsilon}) \qquad \sigma = R \sigma R^{T}$$

$$\dot{\sigma} = \dot{R} \sigma R^{T} + \dot{R} \dot{\sigma} R^{T} + \dot{R} \dot{\sigma} R^{T} + \dot{R} \dot{\sigma} R^{T}$$

$$\dot{\sigma}_{ix} \qquad \dot{\tau}_{ix} \qquad \dot{\tau$$

Truesdell

7 = ô - Lo - o L' + tr(L) o

Introduction to Finite Element Analysis

"The purpose of computing is insight, not numbers."

--Book Dedication: RW Hamming (1971). Introduction to Applied Numerical Analysis. McGraw Hill. "The purpose of analysis is insight, not numbers."

What is analysis?

- From the Greek word analyein, meaning "to break up"
- An informal definition in the context of science and engineering would be "probing into, or simulating nature"

Analysis is the key to effective design

- Analysis is the key to effective design
 - What is an effective design?

- Analysis is the key to effective design
 - What is an effective design?
 - One that works!

http://www.youtube.com/watch?v=_ve4M4UsJQo

- Analysis is the key to effective design
 - What is an effective design?
 - One that works!

- Analysis is the key to effective design
 - What is an effective design?
 - One that performs the task efficiently

- Analysis is the key to effective design
 - What is an effective design?
 - One that performs the task efficiently
 - Economical

VS

- Analysis is the key to effective design
 - What is an effective design?
 - One that performs the task efficiently
 - Economical
 - Safe

- Analysis is the key to effective design
 - What is an effective design?
 - One that performs the task efficiently
 - Economical
 - Safe
 - Manufacturable

- Analysis is the key to effective design
 - What is an effective design?
 - One that performs the task efficiently
 - Economical
 - Safe
 - Manufacturable
 - Appealing

Analysis is performed by utilizing mathematical models

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

An example from solid mechanics

What is the equation of motion in terms of displacement $oldsymbol{u}$?

An example from solid mechanics

To the whiteboard...

$$F = \sigma A(x)$$

$$= E \varepsilon A(x)$$

$$= E \frac{\partial u}{\partial x} A(x)$$

What if A is nonuniform?

What if A is nonuniform?

We discretize the domain.

What if A is nonuniform?

Does the shape of each subdomain look familiar?

The Finite Element Method (FEM) in a nutshell

- The domain of the problem is represented by a collection of simple subdomains, called *finite elements*.
 - The collection of finite elements is called the finite element mesh.
- Over each finite element, the physical process is approximated by functions (polynomials or otherwise) and algebraic equations relating physical quantities at selective points, called *nodes*, are developed.
- The element equations are assembled using continuity and/or "balance" of physical quantities and solved.

Notice I said the physical processes are approximated over an element.

- In the axial deformation problem posed earlier we solved the differential equations exactly.
- This is typically neither feasible nor efficient.
- In FEM we seek an approximation over the element of the form:

$$(u) \approx (u_h) = \sum_{j=1}^{n} (u_j \psi_j) + \sum_{j=1}^{m} (c_j \psi_j)$$

$$(z_j \psi_j) + \sum_{j=1}^{m} (c_j \psi_j)$$

$$(z_j \psi_j) + \sum_{j=1}^{m} (c_j \psi_j)$$

Sources of error

• Error due to the approximation of the domain – discretization error

Sources of error

- Error due to the approximation of the domain discretization error
- Error due to approximation of the solution truncation error

Sources of error

- Error due to the approximation of the domain discretization error
- Error due to approximation of the solution truncation error
- Computer related errors roundoff error

Other remarks on FEM

- After assembly the resulting equations are usually singular, we have to impose boundary conditions in order to solve.
- For time-dependent problems there are two • Use FEM to reduce PDE's to ODE's in time. stages:

 - The ODE's in time are solved exactly or further approximated, typically with finite difference methods, to obtain algebraic equations which are then solved for the nodal values.

In practice

Analysis is done with FEA programs

(LS-DYNA)

In practice

Combined with solid modeling packages

- Catia
- NX (Unigraphics)
- Pro/Engineer
- Autodesk Inventor

In practice

Combined with meshing packages

(Hypermesh)

Cool links

http://www.youtube.com/watch?v=geUCvKayhHE

http://www.youtube.com/watch?v=HmlcUc3A_5Y&feature=related