Faults and fractures at depth

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 5.5, pp. 150)

Geographical coordinate system

\[ \mathbf{R}_G = \begin{bmatrix} \cos\alpha \cos\beta & \sin\alpha \cos\beta & -\sin\beta \\ \cos\alpha \sin\beta\sin\gamma - \sin\alpha\cos\gamma & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \cos\beta\sin\gamma \\ \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma & \cos\beta\cos\gamma \end{bmatrix} \]

Stress in geographical coordinate system

\[ \mathbf{S}_G = \mathbf{R}_G^T \mathbf{S} \mathbf{R}_G \]

Example: Strike-slip faulting

\[\mathbf{S}=\begin{bmatrix} 30 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 20 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} \alpha &= 0^{\circ} & \mbox{Azimuth of } S_{Hmax} \\ \beta &= 0^{\circ} & S_1 = S_{Hmax} \\ \gamma &= 90^{\circ} & S_2 = S_v \end{align}\]

\[ \mathbf{R}_G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \]

\[ \mathbf{S}_G = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 25 \end{bmatrix} \]

Example: Normal faulting

\[\mathbf{S} = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 20 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} \alpha &= 0^{\circ} & \mbox{Azimuth of } S_{hmin} \\ \beta &= -90^{\circ} & S_1 = S_v \\ \gamma &= 0^{\circ} & \end{align}\]

\[ \mathbf{R}_G = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \]

\[ \mathbf{S}_G = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 30 \end{bmatrix} \]

Example: Reverse faulting

\[\mathbf{S} = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 20 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} \alpha &= 90^{\circ} & \mbox{Azimuth of } S_{Hmax} \\ \beta &= 0^{\circ} & S_1 = S_{Hmax} \\ \gamma &= 0^{\circ} & S_2 = S_{hmin} \end{align}\]

\[ \mathbf{R}_G = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[ \mathbf{S}_G = \begin{bmatrix} 25 & 0 & 0 \\ 0 & 30 & 0 \\ 0 & 0 & 20 \end{bmatrix} \]

Example: Strike-slip faulting

\[\mathbf{S} = \begin{bmatrix} 60 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 35 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} \alpha &= 135^{\circ} & \mbox{Azimuth of } S_{Hmax} \\ \beta &= 0^{\circ} & S_1 = S_{Hmax} \\ \gamma &= 90^{\circ} & S_2 = S_{v} \end{align}\]

\[ \mathbf{R}_G = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \]

\[ \mathbf{S}_G = \begin{bmatrix} 47.5 & -12.5 & 0 \\ -12.5 & 47.5 & 0 \\ 0 & 0 & 40 \end{bmatrix} \]

Fault orientation

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 5.5, pp. 150)
\[\hat{\mathbf{n}} = \begin{bmatrix} -\sin(strike)\sin(dip) \\ \cos(strike)\sin(dip) \\ -\cos(dip) \end{bmatrix}\] \[\quad\hat{\mathbf{n}}_s = \begin{bmatrix} \cos(strike) \\ \sin(strike) \\ 0 \end{bmatrix}\quad\]
\[\hat{\mathbf{n}}_d = \begin{bmatrix} -\sin(strike)\cos(dip) \\ \cos(strike)\cos(dip) \\ \sin(dip) \end{bmatrix}\quad\]

Fault traction and stress

Traction on fault plane

\[\begin{equation} \vec{t} = \mathbf{S}_G \cdot \hat{\mathbf{n}} \end{equation}\]

Normal stress to plane

\[\begin{equation} S_n = \vec{t}^\intercal \cdot \hat{\mathbf{n}} \end{equation}\]

Shear stress in dip direction

\[\begin{equation} \tau_d = \vec{t}^\intercal \cdot \hat{\mathbf{n}}_d \end{equation}\]

Shear stress in strike direction

\[\begin{equation} \tau_s = \vec{t}^\intercal \cdot \hat{\mathbf{n}}_s \end{equation}\]

Example: Strike-slip faulting

\[\mathbf{S}_G = \begin{bmatrix} 30 & -8.66 & 0 \\ -8.66 & 40 & 0 \\ 0 & 0 & 30 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} strike &= 60^{\circ} \\ dip &= 90^{\circ} \end{align}\]
\[\quad\hat{\mathbf{n}} = \begin{bmatrix} -0.866 \\ 0.5 \\ 0 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_s = \begin{bmatrix} 0.5 \\ 0.866 \\ 0 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_d = \begin{bmatrix} 0 \\ 0 \\ 1.0 \end{bmatrix}\quad\]

\[S_n = 40 \quad \tau_d = 0 \quad \tau_s = 8.66\]

Example: Normal faulting

\[\mathbf{S}_G = \begin{bmatrix} 4000 & 0 & 0 \\ 0 & 3000 & 0 \\ 0 & 0 & 5000 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} strike &= 45^{\circ} \\ dip &= 60^{\circ} \end{align}\]
\[\quad\hat{\mathbf{n}} = \begin{bmatrix} -0.612 \\ 0.612 \\ -0.5 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_s = \begin{bmatrix} 0.707 \\ 0.707 \\ 0 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_d = \begin{bmatrix} -0.3535 \\ 0.3535 \\ 0.866 \end{bmatrix}\quad\]

\[S_n = 3875 \quad \tau_d = -650 \quad \tau_s = -433\]

Example: Normal faulting

\[\mathbf{S}_G = \begin{bmatrix} 5000 & 0 & 0 \\ 0 & 4000 & 0 \\ 0 & 0 & 3000 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} strike &= 225^{\circ} \\ dip &= 60^{\circ} \end{align}\]
\[\quad\hat{\mathbf{n}} = \begin{bmatrix} 0.612 \\ -0.612 \\ -0.5 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_s = \begin{bmatrix} -0.707 \\ -0.707 \\ 0 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_d = \begin{bmatrix} 0.3535 \\ -0.3535 \\ 0.866 \end{bmatrix}\quad\]

\[S_n = 4125 \quad \tau_d = -650 \quad \tau_s = -433\]

Example: Revese faulting

\[\mathbf{S}_G = \begin{bmatrix} 2100 & -520 & 0 \\ -520 & 1500 & 0 \\ 0 & 0 & 1000 \end{bmatrix}\] \[\quad\quad\quad\] \[\begin{align} strike &= 120^{\circ} \\ dip &= 70^{\circ} \end{align}\]
\[\quad\hat{\mathbf{n}} = \begin{bmatrix} -0.814 \\ -0.470 \\ -0.342 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_s = \begin{bmatrix} -0.5 \\ 0.866 \\ 0 \end{bmatrix}\quad\] \[\quad\hat{\mathbf{n}}_d = \begin{bmatrix} 0.2961 \\ -0.1710 \\ 0.9396 \end{bmatrix}\quad\]

\[S_n = 1441 \quad \tau_d = 161 \quad \tau_s = 488\]

Shear failure (slip on faults)

\[ \dfrac{\tau}{\sigma_n} = \mu \]

Coulomb failure function

\[ f = \tau - \mu \sigma_n \le 0 \]

Frictional strength of faults

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.23, pp. 126)

Induced seismicity

Fluid injection and seismicity at the Rocky Mountain Arsenal

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.22a, pp. 125)