Kinematics of strain

2D geometric strain” by Sanpaz. Licensed under Public Domain via Wikimedia Commons.

Strain tensor

\[ \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} \]

\[\varepsilon_{ij} = \frac{1}{2}\left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) \quad \mbox{for} \quad i=1,2,3 \quad j=1,2,3\]

Volumetric strain

\[ \varepsilon_{vol} = \mbox{tr}(\boldsymbol{\varepsilon}) = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} \]

Material constants for isotropic materials

Young’s modulus

\[E = \frac{S_{11}}{\varepsilon_{11}}\]

Bulk modulus

\[K = \frac{S_{11}+S_{22}+S_{33}}{3\varepsilon_{vol}}\]

Shear Modulus

\[G = \frac{1}{2} \frac{S_{13}}{\varepsilon_{13}}\]

Poisson’s ratio

\[\nu = \frac{\varepsilon_{33}}{\varepsilon_{11}}\]

Typical Young’s modulus values

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Typical Poissons’ ratio values

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Generalized Hooke’s law

\[\boldsymbol{\sigma} = \mathbb{C} \, \boldsymbol{\varepsilon}\]

For isotropic materials

\[\begin{equation} \small \left\lbrace\begin{matrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{matrix}\right\rbrace = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 - \nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1 - \nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1 - \nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1 - 2 \nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1 - 2 \nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1 - 2 \nu) \end{bmatrix} \left\lbrace\begin{matrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \\ 2\varepsilon_{13} \\ 2\varepsilon_{23} \end{matrix}\right\rbrace \end{equation}\]

\[\mathbf{S} = K \varepsilon_{vol} \mathbf{I} + 2 G \left(\boldsymbol{\varepsilon} - \frac{1}{3} \varepsilon_{vol}\mathbf{I}\right)\]

\[G = \frac{E}{2(1+\nu)} \Rightarrow \mbox{shear modulus}\]

\[\mathbf{S} = \lambda \varepsilon_{vol} \mathbf{I} + 2 G \boldsymbol{\varepsilon} \]

\[\lambda = K - \frac{2}{3} G \Rightarrow \text{Lamé's constant}\]

Relationships between constants

\(K=\,\) \(E=\,\) \(\lambda=\,\) \(G=\,\) \(\nu=\,\) \(M=\,\)
\((K,\,E)\) \(K\) \(E\) \(\tfrac{3K(3K-E)}{9K-E}\) \(\tfrac{3KE}{9K-E}\) \(\tfrac{3K-E}{6K}\) \(\tfrac{3K(3K+E)}{9K-E}\)
\((K,\,\lambda)\) \(K\) \(\tfrac{9K(K-\lambda)}{3K-\lambda}\) \(\lambda\) \(\tfrac{3(K-\lambda)}{2}\) \(\tfrac{\lambda}{3K-\lambda}\) \(3K-2\lambda\,\)
\((K,\,G)\) \(K\) \(\tfrac{9KG}{3K+G}\) \(K-\tfrac{2G}{3}\) \(G\) \(\tfrac{3K-2G}{2(3K+G)}\) \(K+\tfrac{4G}{3}\)
\((K,\,\nu)\) \(K\) \(3K(1-2\nu)\,\) \(\tfrac{3K\nu}{1+\nu}\) \(\tfrac{3K(1-2\nu)}{2(1+\nu)}\) \(\nu\) \(\tfrac{3K(1-\nu)}{1+\nu}\)
\((K,\,M)\) \(K\) \(\tfrac{9K(M-K)}{3K+M}\) \(\tfrac{3K-M}{2}\) \(\tfrac{3(M-K)}{4}\) \(\tfrac{3K-M}{3K+M}\) \(M\)
\((E,\,\lambda)\) \(\tfrac{E + 3\lambda + R}{6}\) \(E\) \(\lambda\) \(\tfrac{E-3\lambda+R}{4}\) \(\tfrac{2\lambda}{E+\lambda+R}\) \(\tfrac{E-\lambda+R}{2}\)
\((E,\,G)\) \(\tfrac{EG}{3(3G-E)}\) \(E\) \(\tfrac{G(E-2G)}{3G-E}\) \(G\) \(\tfrac{E}{2G}-1\) \(\tfrac{G(4G-E)}{3G-E}\)
\((E,\,\nu)\) \(\tfrac{E}{3(1-2\nu)}\) \(E\) \(\tfrac{E\nu}{(1+\nu)(1-2\nu)}\) \(\tfrac{E}{2(1+\nu)}\) \(\nu\) \(\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}\)
\((E,\,M)\) \(\tfrac{3M-E+S}{6}\) \(E\) \(\tfrac{M-E+S}{4}\) \(\tfrac{3M+E-S}{8}\) \(\tfrac{E-M+S}{4M}\) \(M\)
\((\lambda,\,G)\) \(\lambda+ \tfrac{2G}{3}\) \(\tfrac{G(3\lambda + 2G)}{\lambda + G}\) \(\lambda\) \(G\) \(\tfrac{\lambda}{2(\lambda + G)}\) \(\lambda+2G\,\)
\((\lambda,\,\nu)\) \(\tfrac{\lambda(1+\nu)}{3\nu}\) \(\tfrac{\lambda(1+\nu)(1-2\nu)}{\nu}\) \(\lambda\) \(\tfrac{\lambda(1-2\nu)}{2\nu}\) \(\nu\) \(\tfrac{\lambda(1-\nu)}{\nu}\)
\((\lambda,\,M)\) \(\tfrac{M + 2\lambda}{3}\) \(\tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda}\) \(\lambda\) \(\tfrac{M-\lambda}{2}\) \(\tfrac{\lambda}{M+\lambda}\) \(M\)
\((G,\,\nu)\) \(\tfrac{2G(1+\nu)}{3(1-2\nu)}\) \(2G(1+\nu)\,\) \(\tfrac{2 G \nu}{1-2\nu}\) \(G\) \(\nu\) \(\tfrac{2G(1-\nu)}{1-2\nu}\)
\((G,\,M)\) \(M - \tfrac{4G}{3}\) \(\tfrac{G(3M-4G)}{M-G}\) \(M - 2G\,\) \(G\) \(\tfrac{M - 2G}{2M - 2G}\) \(M\)
\((\nu,\,M)\) \(\tfrac{M(1+\nu)}{3(1-\nu)}\) \(\tfrac{M(1+\nu)(1-2\nu)}{1-\nu}\) \(\tfrac{M \nu}{1-\nu}\) \(\tfrac{M(1-2\nu)}{2(1-\nu)}\) \(\nu\) \(M\)

Siesmic wave velocity

\[V_p = \sqrt{\frac{M}{\rho}}, \quad \quad V_s = \sqrt{\frac{G}{\rho}}\]