\[ \boldsymbol{\sigma}_{eff} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{23} \\ S_{13} & S_{23} & S_{33} \end{bmatrix} - \begin{bmatrix} P_p & 0 & 0 \\ 0 & P_p & 0 \\ 0 & 0 & P_p \end{bmatrix} \]
\[ \boldsymbol{\sigma}_{eff}= \begin{bmatrix} S_{11} - P_p & S_{12} & S_{13} \\ S_{12} & S_{22} - P_p & S_{23} \\ S_{13} & S_{23} & S_{33} - P_p \end{bmatrix} \]
© Cambridge University Press Zoback (Fig. 1.4, pp. 13)
© Cambridge University Press Zoback (Fig. 1.4, pp. 13)
© Cambridge University Press Zoback (Fig. 1.4, pp. 13)
\(S_v\) - integration of density logs
\(S_{3}\) (\(S_{hmin}\), except in reverse faulting) is obtained from mini-fracs and leak-off tests. Zoback (Chapter 6)
\(P_p\) measure directly or estimated from geophysical logs or siesmic data. Zoback (Chapter 2)
Bound \(S_{Hmax}\) with frictional strength of crust or oberservations of wellbore failures. Zoback (Chapter 4, 7, 8)
Orientation of principal stresses from wellbore observations, geology, earthquake focal mechanisms. Zoback (Chapter 5, 6)
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B., The World Stress Map database release 2008 DOI:10.1594/GFZ.WSM.Rel2008, 2008
\(P_p^{\mbox{hydro}} = \int_0^z \rho_w(z) g {\rm d}z \approx \rho_w g z_w\)
\(\lambda_p = P_p / S_v\)
Hydrostatic: \(\lambda_p \approx 0.44\)
Lithostatic: \(\lambda_p = 1\)
© Cambridge University Press Zoback (Fig. 2.2, pp. 30)
Hydrostatic is characterized by uniform and connected pores.
© Cambridge University Press Zoback (Fig. 2.4, pp. 32)
Shortcourse on Reservoir Geomechanics - John T. Foster - May 2023