Terzaghi definition
$$ \boldsymbol{\sigma} = \mathbf{S} - P_p \mathbf{I} $$"Exact" effective stress
$$ \boldsymbol{\sigma} = \mathbf{S} - \alpha P_p \mathbf{I} $$$\alpha$ is called Biot's coefficient
${}$
$$ \alpha = 1 - \dfrac{K_T}{K_S} $$For sand
$$ K_{S} >> K_T \quad \quad \alpha \approx 1 $$For rocks
$$ \alpha \approx \frac{2}{3} $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.5c, pp. 69)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.10c,d, pp. 75)
Elastic moduli measured from sonic logs will be frequency dependent in poroelastic rocks.
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.7a, pp. 71)
Elastic moduli measured from sonic logs will be frequency dependent in poroelastic rocks.
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.6b, pp. 70)
Transistion from drained to undrained behavior
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.10c,d, pp. 75)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.8, pp. 73a)
Power law
$$ \varepsilon(t) = \varepsilon_0 + c t^n $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.11b, pp. 77)
${}$
$$ \boldsymbol{\sigma} = \mathbf{S} - \alpha P_p \mathbf{I} - K \alpha_T \Delta T \mathbf{I} $$$\alpha_T$ is coefficient of thermal expansion/(contraction)