© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.21, pp. 380)
Taking $\nu = \frac{1}{4}$ and $\alpha = 1$
$$ \Delta S_{Hor} \sim \frac{2}{3} \Delta P_p $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.2, pp. 382)
Simplification leads to
$$ \frac{\Delta S_{Hmin}}{\Delta P_p} = 1 - \frac{1}{(\sqrt{\mu^2+1}+\mu)^2} $$For $\mu = 0.6$
$$ \frac{\Delta S_{Hmin}}{\Delta P_p} = 0.67 $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.4a, pp. 386)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.3ab, pp. 383)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.4b, pp. 387)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.5, pp. 388)
$\qquad \qquad$ | |
Original | Depleted |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.6ab, pp. 391)
with
$$ A = \frac{\Delta S_{hmin}}{\Delta P_p} $$and
$$ q = \frac{\Delta P_p}{S_{Hmax} - S_{hmin}} $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.11, pp. 399)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 4.19, pp. 119)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.12, pp. 402)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.13a, pp. 404)
Modified Kozeny-Carman relationship
$$ \kappa = B \frac{(\phi - \phi_c)^3}{(1+\phi_c-\phi)^2} d^2 $$For change in permeability
$$ \frac{\kappa}{\kappa_i} = \left( \frac{\phi - \phi_c}{\phi_i - \phi_c} \right)^3 \left( \frac{1+ \phi_c - \phi_i}{1 + \phi_c - \phi} \right)^2 $$Including a factor for grain size reduction
$$\Gamma = \frac{1-d/d_i}{1-\phi/\phi_i}$$$$ \frac{\kappa}{\kappa_i} = \left( \frac{\phi - \phi_c}{\phi_i - \phi_c} \right)^3 \left( \frac{1+ \phi_c - \phi_i}{1 + \phi_c - \phi} \right)^2 \left(1-\Gamma\left(1-\frac{\phi}{\phi_i}\right) \right) $$© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.14, pp. 408)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.15, pp. 410)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.16, pp. 411)
$$ \begin{align} u_z(r,0) &= -\frac{1}{\pi} c_m(1-\nu) \frac{D}{\left(r^2 + D^2\right)^{3/2}} \Delta P_p V \\ u_r(r,0) &= +\frac{1}{\pi} c_m(1-\nu) \frac{D}{\left(r^2 + D^2\right)^{3/2}} \Delta P_p V \end{align} $$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.17, pp. 414)
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.17, pp. 414)
$$\quad$$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.18, pp. 416)