${}$
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 7.4, pp. 214)
${}$
$$ \Delta P = P_b - P_p $$so
$$ S_{Hmax} = 3 S_{hmin} - P_b - P_p + T_0 $$or
$$ S_{Hmax} = 3 S_{hmin} - P_b(T=0) - P_p $$Consider a system with compressibility $\beta_s$
$$ \beta_s = \frac{\Delta V_s}{V_s} \frac{1}{\Delta P} $$Recall: $S_{Hmax}$ from breakout data
$$ S_{Hmax} = \frac{(C_0 + 2 P_p + \Delta P + \Delta \sigma^T) - S_{hmin}(1 + 2 \cos(\pi - w_{bo}))}{1 - 2 \cos(\pi - w_{bo})} $$Recall: From Kirsch solution
$$ S_{Hmax} = 3 S_{hmin} - 2 P_p - \Delta P - T_0 - \sigma^{\Delta T} $$$\quad \quad$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.21, pp. 334)
© Cambridge University Press Zoback, Reservoir Geomechanics (Table 4.1, Eq. 5, pp. 113)
$\quad \quad$ | |
500 psi slow drawdown | $\sim 60^\circ$ breakouts |
$\quad \quad$ | 1000 psi rapid drawdown | $> 90^\circ$ breakouts |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.22, pp. 335)
$\quad \quad$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.23, pp. 336)
$\quad \quad$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.24a, pp. 337)
$\quad \quad$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.25, pp. 338)
$\quad \quad$ |
© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.24b, pp. 337)