import IPython.display
IPython.display.Image("images/pores.png", width=400, embed=True)
${}$
$$ \boldsymbol{\sigma}_{eff} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{23} \\ S_{13} & S_{23} & S_{33} \end{bmatrix} - \begin{bmatrix} P_p & 0 & 0 \\ 0 & P_p & 0 \\ 0 & 0 & P_p \end{bmatrix} $$${}$
$$ \boldsymbol{\sigma}_{eff}= \begin{bmatrix} S_{11} - P_p & S_{12} & S_{13} \\ S_{12} & S_{22} - P_p & S_{23} \\ S_{13} & S_{23} & S_{33} - P_p \end{bmatrix} $$Hydrostatic | Overpressure |
© Cambridge University Press Zoback (Fig. 1.4, pp. 13)
Hydrostatic | Overpressure |
© Cambridge University Press Zoback (Fig. 1.4, pp. 13)
Hydrostatic | Overpressure |
© Cambridge University Press Zoback (Fig. 1.4, pp. 13)
IPython.display.Image("images/us_stress.png", width=600, embed=True)
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B., The World Stress Map database release 2008 DOI:10.1594/GFZ.WSM.Rel2008, 2008
${}$
$P_p^{\mbox{hydro}} = \int_0^z \rho_w(z) g {\rm d}z \approx \rho_w g z_w$
$\lambda_p = P_p / S_v$
Hydrostatic: $\lambda_p \approx 0.44$
Lithostatic: $\lambda_p = 1$
IPython.display.Image("images/overpressure.png", width=400, embed=True)
© Cambridge University Press Zoback (Fig. 2.2, pp. 30)
IPython.display.Image("images/compartment.png", width=400, embed=True)
© Cambridge University Press Zoback (Fig. 2.4, pp. 32)