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March 12, 2025

1 Homework Assignment 2
1.1 Problem 1

1. Write out the conservation of linear momentum equations without using the summation
convection, i.e. all components.

Solution

Writing out the components, using an 𝑥, 𝑦, 𝑧 component convention

𝜌𝐷𝑣𝑥
𝐷𝑡 = 𝜕𝜎𝑥𝑥

𝜕𝑥 + 𝜕𝜎𝑥𝑦
𝜕𝑦 + 𝜕𝜎𝑥𝑧

𝜕𝑧 + 𝜌𝑏𝑥

𝜌𝐷𝑣𝑦
𝐷𝑡 = 𝜕𝜎𝑥𝑦

𝜕𝑥 + 𝜕𝜎𝑦𝑦
𝜕𝑦 + 𝜕𝜎𝑦𝑧

𝜕𝑧 + 𝜌𝑏𝑦

𝜌𝐷𝑣𝑧
𝐷𝑡 = 𝜕𝜎𝑥𝑧

𝜕𝑥 + 𝜕𝜎𝑦𝑧
𝜕𝑦 + 𝜕𝜎𝑧𝑧

𝜕𝑧 + 𝜌𝑏𝑧

1.2 Problem 2
For most of the class, we’ve used a solid mechanics setting to motivate the physics of interest;
however, the principles we’ve derived are general enough to apply to fluids as well. In an ideal
nonviscous fluid there can be no shear stress. Hence, the stress tensor is entire hydrostatic, 𝜎𝑖𝑗 =
−𝑝𝛿𝑖𝑗. Show that this leads to the following form of the momentum equation, known as Euler’s
equation of motion for a frictionless fluid:

−1
𝜌∇𝑝 + 𝑏⃗ = 𝜕 ⃗𝑣

𝜕𝑡 + ⃗𝑣 ⋅ ∇ ⃗𝑣

Solution

Starting with the conservation of momentum equation
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𝜌𝐷 ⃗𝑣
𝐷𝑡 = ∇ ⋅ 𝜎 + 𝜌 ⃗𝑏

𝜕 ⃗𝑣
𝜕𝑡 + ⃗𝑣 ⋅ ∇ ⃗𝑣 = 1

𝜌∇ ⋅ 𝜎 + ⃗𝑏
𝜕 ⃗𝑣
𝜕𝑡 + ⃗𝑣 ⋅ ∇ ⃗𝑣 = −1

𝜌∇ ⋅ (𝑝I) + ⃗𝑏
𝜕 ⃗𝑣
𝜕𝑡 + ⃗𝑣 ⋅ ∇ ⃗𝑣 = −1

𝜌∇𝑝 + ⃗𝑏

1.3 Problem 3
Using the different forms of conservation of mass, derive an expression for 𝑑𝐽

𝑑𝑡 in terms of ⃗𝑣, where
𝐽 = det(F)
Solution

Using the material form of conservation of mass

̇𝐽 = 𝜕
𝜕𝑡 (det (F)) ,

= 𝜕 (det (F))
𝜕𝐹𝑖𝑗

𝜕𝐹𝑖𝑗
𝜕𝑡 ,

= 𝜕 (det (F))
𝜕𝐹𝑖𝑗

𝐿𝑖𝑘𝐹𝑘𝑗,

= det(F)𝐹 −1
𝑗𝑖 𝐿𝑖𝑘𝐹𝑘𝑗,

= det(F)𝐿𝑖𝑘𝛿𝑘𝑖,
= det(F)𝐿𝑘𝑘,

= 𝐽 𝜕𝑣𝑘
𝜕𝑥𝑘

,

= 𝐽(∇ ⋅ v),

1.4 Problem 4
Assume that the internal-energy density can be given as 𝑢 = 𝑢(𝜖, 𝑇 ), that the heat flux is governed
by Fourier’s law ⃗𝑞 = −𝑘(𝑇 )∇𝑇 , and that 𝑟 = 0. Defining the specific heat 𝐶 = 𝜕𝑢

𝜕𝑇 , write the
equation resulting from combining these assumptions with the energy- balance equation.

Solution

Starting with the energy equation, for small displacements 𝐷𝑖𝑗 ≈ ̇𝜀𝑖𝑗
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𝜌𝐷𝑢
𝐷𝑡 = 𝜎 ∶ ̇𝜀 + ∇ ⋅ ⃗𝑞

𝜌 𝐷𝑢
𝐷𝑇

𝐷𝑇
𝐷𝑡 + 𝜌𝐷𝑢

𝐷𝜖
𝐷𝜖
𝐷𝑡 = 𝜎 ∶ ̇𝜀 − ∇ ⋅ (𝑘(𝑇 )∇𝑇 )

𝜌𝐶 ̇𝑇 + 𝜌𝐷𝑢
𝐷𝜖 ̇𝜖 = 𝜎 ∶ ̇𝜀 − ∇𝑘(𝑇 )∇𝑇 − 𝑘(𝑇 )∇2𝑇

𝜌𝐶 ̇𝑇 + 𝜌𝐷𝑢
𝐷𝜖 ̇𝜖 = 𝜎 ∶ ̇𝜀 − 𝑘(𝑇 )∇2𝑇

where it is understood that 𝜖 is a scalar internal state variable.

1.5 Problem 5
Show that, in an isotropic linearly elastic solid, the principal stress and principal strain directions
coincide.

Solution

There are several ways to demonstrate this, first, let’s assume that there is an orthonormal tensor
V that diagonalizes the strain tensor 𝜀, i.e. it consists of eigenvectors of the strain tensor and
produces a diagonal tensor, 𝜀′ with the principle strains on the diagonal.

𝜀′ = V−1𝜀V

We’ll use the eigenvectors from the strain tensor to transform the stress tensor, if the result is
diagonal, we know they are also eigenvectors of the stress tensor, that is the principle directions of
both tensors are in the same direction.

𝜎′
𝑖𝑗 = 𝑉 −1

𝑖𝑘 𝜎𝑘𝑙𝑉𝑙𝑗
= 𝑉 −1

𝑖𝑘 (2𝜇𝜀𝑘𝑙 + 𝜆𝜀𝑚𝑚𝛿𝑘𝑙) 𝑉𝑙𝑗
= 2𝜇𝑉 −1

𝑖𝑘 𝜀𝑘𝑙𝑉𝑙𝑗 + 𝜆𝜀𝑚𝑚𝑉 −1
𝑖𝑙 𝑉𝑙𝑗

= 2𝜇𝑉 −1
𝑖𝑘 𝜀𝑘𝑙𝑉𝑙𝑗 + 𝜆𝜀𝑚𝑚𝛿𝑖𝑗

= 2𝜇𝜀′
𝑖𝑗 + 𝜆𝜀𝑚𝑚𝛿𝑖𝑗

By inspection we can see that both the first and second terms of the resulting expressions are
diagonal by definition, therefore 𝜎′ is also diagonal and V also contains the eigenvectors of 𝜎

1.6 Problem 6
Write the elastic modulus matrix 𝐶𝐼𝐽 for an isotropic linearly elastic solid in terms of the Young’s
modulus 𝐸 and the Poisson’s ratio 𝜈.

Solution
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𝐶𝐼𝐽 = 𝐸
2(1 + 𝜈)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2(1−𝜈)
1−2𝜈

2𝜈
1−2𝜈

2𝜈
1−2𝜈 0 0 0

2𝜈
1−2𝜈

2(1−𝜈)
1−2𝜈

2𝜈
1−2𝜈 0 0 0

2𝜈
1−2𝜈

2𝜈
1−2𝜈

2(1−𝜈)
1−2𝜈 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1.7 Problem 7
Combine the generalized Hooke’s law for an isotropic linearly elastic solid with the equations of
motion and the definition of small strain in order to derive the equations of motion for such a solid
entirely in terms of displacement, using

1. 𝜆 and 𝜇
2. 𝐺 and 𝜈

Solution

𝜌𝐷2𝑢⃗
𝐷𝑡2 = ∇ ⋅ 𝜎 + 𝜌𝑏⃗

= ∇ ⋅ (2𝜇𝜀 + 𝜆tr(𝜀)I) + 𝜌 ⃗𝑏

= 𝜇 𝜕
𝜕𝑥𝑗

(𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

) + 𝜆 𝜕2𝑢𝑘
𝜕𝑥𝑗𝜕𝑥𝑘

𝛿𝑖𝑗

= 𝜇𝜕2𝑢𝑖
𝜕𝑥2

𝑗
+ 𝜇 𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝜆 𝜕2𝑢𝑘

𝜕𝑥𝑖𝜕𝑥𝑘

= 𝜇𝜕2𝑢𝑖
𝜕𝑥2

𝑗
+ 𝜇 𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝜆 𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜇𝜕2𝑢𝑖
𝜕𝑥2

𝑗
+ (𝜇 + 𝜆) 𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜇∇2𝑢⃗ + (𝜇 + 𝜆)∇(∇ ⋅ 𝑢⃗)

= 𝐺∇2𝑢⃗ + 𝐺
1 − 2𝜈 ∇(∇ ⋅ 𝑢⃗)

1.8 Problem 8
1. Show that minimizing the integral

𝐼 = ∫
𝑡2

𝑡1

𝐿(𝑦, ̇𝑦, 𝑡) 𝑑𝑡

results in the Euler-Lagrange Equation, i.e.

𝜕𝐿
𝜕𝑦 − 𝑑

𝑑𝑡 (𝜕𝐿
𝜕 ̇𝑦 ) = 0
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2. A mass 𝑚 suspended from a spring with stiffness 𝑘 has the following kinetic and potential
energies,

𝑇 = 1
2𝑚 ̇𝑦2 𝑈 = 1

2𝑘𝑦2

Assume 𝐿 = 𝑇 − 𝑈 and use the Euler-Lagrange equation to derive the equation-of-motion for
the spring-mass system.

Solution

1. Compute 𝛿𝐼 , i.e.

𝛿𝐼 = ∫
𝑡2

𝑡1

𝜕𝐿
𝜕𝑦 𝛿𝑦 + 𝜕𝐿

𝜕 ̇𝑦 𝛿 ̇𝑦d𝑡 = 0

integrate the second term by parts

𝛿𝐼 = ∫
𝑡2

𝑡1

𝜕𝐿
𝜕𝑦 𝛿𝑦 − d

d𝑡 (𝜕𝐿
𝜕 ̇𝑦 ) 𝛿𝑦d𝑡 + [𝜕𝐿

𝜕 ̇𝑦 𝛿𝑦]
𝑡2

𝑡1

= 0

the last term vanishes because the varations at 𝑡1 and 𝑡2 are fixed. Then using the fundamental
lemma of the calculus of varations, we have

𝜕𝐿
𝜕𝑦 − d

d𝑡 (𝜕𝐿
𝜕 ̇𝑦 ) = 0

2. The Lagrangian is
𝐿 = 𝑇 − 𝑈 = 1

2𝑚 ̇𝑦2 − 1
2𝑘𝑦2.

Using the Euler-Lagrange equation:
𝜕𝐿
𝜕𝑦 − 𝑑

𝑑𝑡 (𝜕𝐿
𝜕 ̇𝑦 ) = 0,

we compute the necessary derivatives:
𝜕𝐿
𝜕𝑦 = 𝜕

𝜕𝑦 (1
2𝑚 ̇𝑦2 − 1

2𝑘𝑦2) = −𝑘𝑦,
𝜕𝐿
𝜕 ̇𝑦 = 𝜕

𝜕 ̇𝑦 (1
2𝑚 ̇𝑦2 − 1

2𝑘𝑦2) = 𝑚 ̇𝑦.

The time derivative of 𝜕𝐿
𝜕 ̇𝑦 is

𝑑
𝑑𝑡 (𝜕𝐿

𝜕 ̇𝑦 ) = 𝑑
𝑑𝑡(𝑚 ̇𝑦) = 𝑚 ̈𝑦.

Substituting into the Euler-Lagrange equation

−𝑘𝑦 − 𝑚 ̈𝑦 = 0,

or, after rearranging
𝑚 ̈𝑦 + 𝑘𝑦 = 0.
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