
Mass Conservation in the Current Configuration

We begin with the mass balance equation for the fluid phase in a porous medium, expressed in
the current (spatial) configuration. The fluid occupies the pore space, and its mass conservation is
governed by

∂ρf

∂t
+∇x · (ρfvf ) = 0,

where, ρf is the bulk fluid density, defined as the mass of the fluid divided by the total volume of
the mixture, vf is the velocity of the fluid phase, ∇x denotes the divergence operator with respect
to the spatial coordinates x,

Substituting ρf = φf ρ̄f into the equation, we obtain

∂(φf ρ̄f )

∂t
+∇x · (φf ρ̄fvf ) = 0.

This form explicitly incorporates the porosity and intrinsic fluid density, setting the stage for further
manipulation.

Relative Mass Flux

In a porous medium, the solid matrix also moves, with a velocity vs. To account for the relative
motion between the fluid and solid phases, we define the relative mass flux w

w = φf ρ̄f (vf − vs).

This represents the mass flow rate of the fluid relative to the solid per unit area in the current
configuration. Solving for the fluid velocity

vf = vs +
w

φf ρ̄f
.

Substitute this expression into the mass balance equation

∂(φf ρ̄f )

∂t
+∇x ·

(
φf ρ̄f

(
vs +

w

φf ρ̄f

))
= 0.

Distribute the terms inside the divergence

∂(φf ρ̄f )

∂t
+∇x · (φf ρ̄fvs +w) = 0.

Using the linearity of the divergence operator, we split it as

∂(φf ρ̄f )

∂t
+∇x · (φf ρ̄fvs) +∇x ·w = 0

This equation now separates the contributions of the solid motion and the relative flux, which is
advantageous for analyzing the system on the motion of the solid.
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Material Time Derivative with Respect to the Solid Phase

Since the solid matrix is deforming, it is natural to express the time derivative in a frame moving
with the solid phase. The material time derivative following the solid velocity vs is defined as

Ds

Dt
=

∂

∂t
+ vs · ∇x.

Using the product rule to expand the divergence operator keeping the terms φf ρ̄f together we have

∂(φf ρ̄f )

∂t
+ (∇xφ

f ρ̄f ) · vs + φf ρ̄f∇x · vs = 0.

Recognize that
Ds

Dt
(φf ρ̄f ) =

∂(φf ρ̄f )

∂t
+ (vs · ∇x)(φ

f ρ̄f ),

so the mass balance becomes

Ds

Dt
(φf ρ̄f ) + φf ρ̄f∇x · vs +∇x ·w = 0. (1)

Now observe the following

Ds

Dt
(Jsφf ρ̄f ) = JsD

s

Dt
(φf ρ̄f ) +

DsJs

Dt
(φf ρ̄f )

= JsD
s

Dt
(φf ρ̄f ) + Js(φf ρ̄f )∇x · vs (2)

using the identity J̇s = Js∇x · vs. Dividing (2) through by Js gives

1

Js

Ds

Dt
(Jsφf ρ̄f ) =

Ds

Dt
(φf ρ̄f ) + φf ρ̄f∇x · vs. (3)

Comparing the right hand side of (3) with the first two terms in (1) then

1

Js

Ds

Dt
(Jsφf ρ̄f ) +∇x ·w = 0 (4)

Transformation to the Reference Configuration

To simplify the analysis, especially when dealing with constitutive relationships defined in the
undeformed state, we transform the equation to the reference configuration of the solid, denoted
by Xs. The Jacobian Js relates the current volume element dv to the reference volume element
dV s via dv = JsdV s.

First, transform the relative mass flux w using the Piola transform. Define the reference mass
flux W

W = Jsw(Fs)−T .

The divergence transforms as
∇Xs ·W = Js∇x ·w,

or equivalently
∇x ·w =

1

Js
∇Xs ·W.
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Now, define the reference (Lagrangian) porosity Φ = Jsφf , which represents the fluid volume per
unit reference volume of the solid. In the reference frame, the material derivative simplifies to the
partial derivative with respect to time at fixed Xs

Ds

Dt
=

∂

∂t

∣∣∣∣
Xs

.

Substitute into the mass balance

1

Js

∂

∂t
(Φρ̄f ) +∇x ·w = 0,

using the transformed divergence,

1

Js

∂

∂t
(Φρ̄f ) +

1

Js
∇Xs ·W = 0.

Now multiply through by Js

∂

∂t
(Φρ̄f ) +∇Xs ·W = 0.

This is the mass balance equation in the reference configuration, where Φρ̄f is the fluid mass per
unit reference volume, and W is the reference mass flux.

Incorporating the Barotropic Assumption

Assume the fluid is barotropic, meaning its intrinsic density depends only on pressure: ρ̄f = ρ̄f (p).
The compressibility is characterized by the bulk modulus Kf

dρ̄f

dp
=

ρ̄f

Kf
.

Thus,
∂ρ̄f

∂t
=

dρ̄f

dp

∂p

∂t
=

ρ̄f

Kf

∂p

∂t
.

Expand the time derivative in the mass balance

∂

∂t
(Φρ̄f ) =

∂Φ

∂t
ρ̄f +Φ

∂ρ̄f

∂t
=

∂Φ

∂t
ρ̄f +Φ

ρ̄f

Kf

∂p

∂t
,

and substitute into the mass balance

∂Φ

∂t
ρ̄f +Φ

ρ̄f

Kf

∂p

∂t
+∇Xs ·W = 0.

Factor out ρ̄f

ρ̄f
(
∂Φ

∂t
+

Φ

Kf

∂p

∂t

)
+∇Xs ·W = 0. (5)
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Porosity Constitutive Equation

Using a constitutive equation for the Lagrangian porosity (c.f. [1] eq. (4.19b) assuming isothermal)

Φ− Φ0 = B ln(Js) +
B − Φ

Ks
(p− p0) (6)

Taking the time derivative of both sides of (6) gives

∂Φ

∂t
=

∂B

∂t
ln(Js) +

B

Js

∂Js

∂t
+

1

Ks

[(
∂B

∂t
− ∂Φ

∂t

)
(p− p0) + (B − Φ)

∂p

∂t

]
.

For simplicity, assume p << Ks so that

∂Φ

∂t
≈ ∂B

∂t
ln(Js) +

B

Js

∂Js

∂t
+

B − Φ

Ks

∂p

∂t
. (7)

Substitute (7) into (5)

∂B

∂t
(ln Js) +

B

Js

∂Js

∂t
+

(
B − Φ

Ks
+

Φ

Kf

)
∂p

∂t
+

1

ρ̄f
∇Xs ·W = 0.

Or equivalently
∂B

∂t
(ln Js) +

B

Js

∂Js

∂t
+

1

M

∂p

∂t
+

1

ρ̄f
∇Xs ·W = 0 (8)

where
M =

KsKf

Kf (B − Φ) +KsΦ
.

Fluid Momentum Balance and Darcy’s Law

Recall the momentum balance equation for the fluid is

ρfaf = ρfb+ hf − φf∇xp,

if we assume h = − µ
ρ̄f
k−1w (i.e. Darcy’s Law) and rearrange, we have

w =ρ̄f
k

µ

[
ρ̄f

(
b− af

)
−∇xp

]
,

pulling back to the reference configuration we have

W =ρ̄f
K

µ

[
ρ̄f (Fs)−ᵀ

(
b− af

)
−∇Xsp

]
,

where
K = Js (Fs)−1 k (Fs)−ᵀ .
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Linearization

To linearize (9) we assume B is constant therfore ∂B
∂t = 0. Additionally, substitute in the identity

J̇s = Js∇x · vs and push-forward the equation to the current configuration with Js ≈ 1.

B∇x · vs +
1

M

∂p

∂t
+

1

ρ̄f
∇x ·w = 0 (9)

Note that ∇x ·vs = tr(D), where D is the rate-of-deformation tensor; which, for small deformations,
is approximately equivalent to the small strain rate tensor, i.e. Dii ≈ ε̇ii. Finally, if ρ̄f varies slowly
in space and we ignore all body and inertial forces, then the final linearized mass balance equation
is

Btr(ε̇) + 1

M

∂p

∂t
−∇x ·

(
k

µ
∇xp

)
= 0,

which can be combined with the linearized equalibrium equation

∇x ·
(
σ′′s −BpI

)
= 0.

to solve for displacements u and pressure p.
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